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APPENDIX A
DERIVATION OF COVARIANCE FUNCTION IN CONVO-
LUTION PROCESS

For the convolution process:

fi(x) = gi(x) ∗ Z(x) =
∫ ∞
−∞

gi(x− u)Z(u)du,

If Z(x) is a commonly used white Gaussian noise process,
i.e., cov (Z(x), Z(x′)) = δ(x − x′) and E(Z(x)) = 0, then
the cross covariance is derived as:

covfij (x,x
′) = cov{gi(x) ∗ Z(x), gj(x′) ∗ Z(x′)}

= E
{∫ ∞
−∞

gi(x− u)Z(u)du
∫ ∞
−∞

gj(x
′ − u′)Z(u′)du′

}
=

∫ ∞
−∞

∫ ∞
−∞

gi(u)gj(u
′)E {Z(x− u)Z(x′ − u′)} dudu′

=

∫ ∞
−∞

∫ ∞
−∞

gi(u)gj(u
′)δ(x− u− x′ + u′)dudu′

=

∫ ∞
−∞

gi(u)gj(u− v)du, (1)

where v = x − x′ and the last equality is based on the
property of Dirac function that

∫
g(u′)δ(u′−x)du′ = g(x).

For our MGCP structure:

yi(x) = fi(x) + εi(x) = gii(x) ∗ Zi(x) + εi(x), i ∈ IS

yt(x) = ft(x) + εt(x) =
∑
j∈I

gjt(x) ∗ Zj(x) + εt(x),

the source-target covariance function can be calculated as:

covfit(x,x
′) = cov(fi(x), ft(x

′))

= cov

gii(x) ∗ Zi(x),∑
j∈I

gjt(x
′) ∗ Zj(x′)


=
∑
j∈I

cov {gii(x) ∗ Zi(x), gjt(x′) ∗ Zj(x′)}

=

∫ ∞
−∞

gii(u)git(u− v)du, i ∈ IS (2)

where v = x−x′. In the same way, we can derive the auto-
covariance as

covfii(x,x
′) =

∫ ∞
−∞

gii(u)gii(u− v)du, i ∈ IS

covftt(x,x
′) =

∑
j∈I

∫ ∞
−∞

gjj(u)gjt(u− v)du.
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Suppose that git(x) = 0,∀i ∈ U ⊆ IS for all x ∈ X . For
notational convenience, suppose U = {1, 2, ..., h|h ≤ q},
then the predictive distribution of the model at any new
input x∗ is unrelated with {f1, f2, ..., fh} and is reduced to:

p(yt(x∗)|y) = N (kT+C
−1
+ y+,

covftt(x∗,x∗) + σ2
t − kT+C−1+ k+),

where k+ = (KT
h+1,∗, ...,K

T
q,∗,K

T
t,∗)

T , y+ =

(yTh+1, ...,y
T
q ,y

T
t )
T , and

C+ =


Ch+1,h+1 · · · 0 Ch+1,t

...
. . .

...
...

0 · · · Cq,q Cq,t
CT
h+1,t · · · CT

q,t Ct,t

 .

Proof. Recall that

covyjt(x,x
′) = covfjt(x,x

′)

=

∫ ∞
−∞

gjj(u)gjt(u− v)du,

covytt(x,x
′) = covftt(x,x

′) + σ2
t δ(x− x′)

=
∑
h∈I

∫ ∞
−∞

ghh(u)ght(u− v)du+ σ2
t δ(x− x′),

for all j ∈ {1, 2, ..., q}, so git(x) = 0, i ∈ {1, 2, ..., h|h ≤ q}
implies that covyit (x,x

′) = 0 for all i ∈ {1, 2, ..., h} and

covytt(x,x
′) =

t∑
i=h+1

∫ ∞
−∞

gii(u)git(u−v)du+σ2
t δ(x−x′).

Therefore, we have that Ci,t = 0, i ∈ {1, 2, ..., h} and

partition covariance matrix C =

(
C− 0
0 C+

)
, where C− =

C1,1 0 · · · 0
0 C2,2 · · · 0
...

...
. . .

...
0 0 · · · Ch,h

.

The predictive distribution at point x∗ is

yt(x∗) ∼ N(KT
∗ C
−1y, covftt(x∗,x∗) + σ2

t −KT
∗ C
−1K∗).
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Also, based on that covyit(x,x
′) = 0 for all i ∈ {1, 2, ..., h},

we have that K∗ =
(
0,kT+

)T
. Let y− =

(
yT1 , ...,y

T
h

)T
, then

y =
(
yT−,y

T
+

)T
. Therefore,

KT
∗ C
−1y = (0,kT+)

(
C− 0
0 C+

)−1
(yT−,y

T
+)
T

= (0,kT+)

(
C−1− 0
0 C−1+

)
(yT−,y

T
+)
T

= kT+C
−1
+ y+,

KT
∗ C
−1K∗ = (0,kT+)

(
C− 0
0 C+

)−1
(0,kT+)

T

= kT+C
−1
+ k+.

Note that the auto-covariance matrix of target output ft,
Ctt, is also unrelated with observed data {Xi|i = 1, 2, ..., h}
which from source output {fi|i = 1, 2, ..., h}. As a result,
the predictive distribution is totally independent on these
outputs. Proof completes.

APPENDIX C
REGULARITY CONDITIONS

In this part, we state the regularity conditions for the con-
sistency theorem of the MLE θ̂#, which are formulated in
[34].

Denote y with total N observations as yN , and let

pk(θ) =
p(yk|θ)
p(yk−1|θ)

for each k. Assume pk(θ) is twice differentiable with respect
to θ in a neighborhood of θ∗. Also assume that the support
of p(yN |θ) is independent of θ in the neighborhood. Define
φk(θ) = log pk(θ), and its first derivative φ′k(θ), second
derivative φ′′k(θ).

For simplicity and without loss of generality, we only
consider the conditions for one-dimensional case. Define
φ∗′k = φ′k(θ

∗) and φ∗′′k = φ′′k(θ
∗). Let FN be the σ-field

generated by yj , 1 ≤ j ≤ N , and F0 be the trivial σ-
field. Define the random variable i∗k = var(φ∗′k |Fk−1) =
E[(φ∗′k )2|Fk−1] and I∗N =

∑N
k=1 i

∗
k. Define SN =

∑N
k=1 φ

∗′
k

and S∗N =
∑N
k=1 φ

∗′′
k + I∗N . If the following conditions hold:

(c1) φk(θ) is thrice differentiable in the neighborhood of
θ∗. Let φ∗′′′k = φ′′′k (θ

∗) be the third derivative,
(c2) Twice differentiation of

∫
p(yN |θ)dµN (yN ) with re-

spect to θ exists in the neighborhood of θ∗,
(c3) E|φ∗′′k | <∞ and E|φ∗′′k + (φ∗′k )

2| <∞.
(c4) There exists a sequence of constants K(N) → ∞ as

N →∞ such that:

(i) K(N)−1SN
p→ 0,

(ii) K(N)−1S∗N
p→ 0,

(iii) there exists a(θ∗) > 0 such that ∀ε > 0,
P [K(N)−1I∗N ≥ 2a(θ∗)] ≥ 1 − ε for all
N ≥ N(ε),

(iv) K(N)−1
∑N
k=1 E|φ∗′′′k | < M <∞ for all N ,

then the MLE θ̂# is consistent for θ∗. There exists a sequence
rN such that rN →∞ as N →∞, i.e.,

‖θ̂# − θ∗‖ = OP (r
−1
N ).
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Suppose that the MLE for L(θ|y), θ̂#, is rN consistent, i.e.,
satisfying Eq. (19). If max{|P′′γ(θ∗i0)| : θ∗i0 6= 0} → 0, then
there exists a local maximizer θ̂ of LP(θ|y) s.t. ‖θ̂ − θ∗‖ =
OP (r

−1
N + r0), where r0 = max{|P′γ(θ∗i0)| : θ∗i0 6= 0}.

Proof. Recall the assumptions in Section 3.2. For the
unpenalized log-likelihood L(θ), the MLE θ̂# is rN con-
sistent where rN is a sequence such that rN → ∞ as
N → ∞. And we have that L′(θ∗) = OP (rN ) and
IN (θ∗) = OP (r

2
N ), which are the standard argument based

on the consistency of estimator. Based on that, we aim to
study the asymptotic properties of the penalized likelihood
LP(θ) = L(θ) − r2NPγ(θ0). Here we multiply the penalty
function by r2N to avoid that penalty term degenerates as
N → ∞. The following proof is similar to that of Fan and
Li [33] but based on dependent observations.

To prove theorem 2, we need to show that for any given
ε > 0, there exists a large constant U such that:

P

{
sup
‖u‖=U

LP(θ
∗ + r+Nu) < LP(θ

∗)

}
≥ 1− ε, (3)

where r+N = r−1N + r0. This implies that with probability at
least 1 − ε there exists a local maximum in the ball {θ∗ +
r+Nu : ‖u‖ ≤ U}. So the local maximizer θ̂ satisfies that
‖θ̂ − θ∗‖ = OP (r

+
N ).

By Pγ(0) = 0, we have

LP(θ
∗ + r+Nu)− LP(θ

∗)

≤ L(θ∗ + r+Nu)− L(θ
∗)

− r2N
q∑

i=h+1

[
Pγ(|θ∗i0 + r+Nui0|)− Pγ(|θ∗i0|)

]
,

where h and q are the number of zero components and all
components in θ∗i0, and ui0 is the element corresponding
to θi0 in u. Let IN (θ∗) be the finite and positive definite
information matrix at θ∗ with N observations. Applying a
Taylor expansion on the likelihood function, we have that

LP(θ
∗ + r+Nu)− LP(θ

∗)

≤ r+NL
′(θ∗)Tu− 1

2
(r+N )2uT IN (θ∗)u[1 + oP (1)]

− r2N
q∑

i=h+1

{
r+NP′γ(|θ∗i0|)sign(θ∗i0)ui0

+
1

2
(r+N )2P′′γ(|θ∗i0|)u2i0[1 + oP (1)]

}
, (4)

Note that ‖L′(θ∗)‖ = OP (rN ) and IN (θ∗) = OP (r
2
N ). so

the first term on the right-hand side of Eq. (4) is on the
order OP (r+NrN ), while the second term is OP

(
(r+NrN )2

)
.

By choosing a sufficient large U , the first term can be
dominated by the second term uniformly in ‖u‖ = U .
Besides, the absolute value of the third term is bounded
by√
q − hr2Nr+Nr0‖u‖+(rNr

+
N )2 max{|P′′γ(θ∗i0)| : θ∗i0 6= 0}‖u‖2,

which is also dominated by second term as it is on the
order of oP

(
(rNr

+
N )2

)
. Thus, Eq. (3) holds and the proof

completes.
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Let θ∗10 and θ∗20 contain the zero and non-zero components
in θ∗0 respectively. Assume the conditions in Theorem 2 also
hold, and θ̂ is rN consistent by choosing proper γ in Pγ(θ0).
If lim inf

N→∞
lim inf
θ→0+

γ−1P′γ(θ) > 0 and (rNγ)
−1 → 0, then

lim
N→∞

P
(
θ̂10 = 0

)
= 1.

Proof. To prove this theorem, we only need to prove that
for a small εN = UrN , where U is a given constant and
i = 1, ..., s,

∂LP(θ)

∂θi0
θi0 < 0, 0 < |θi0| < εN . (5)

By Taylor’s expansion,

∂LP(θ)

∂θi0
=
∂L(θ)

∂θi0
− r2NP′γ(|θi0|)sign(θi0)

=
∂L(θ∗)

∂θi0
+

[
∂

(
∂L(θ∗)

∂θi0

)
/∂θ

]T
(θ − θ∗)[1 + oP (1)]

− r2NP′γ(|θi0|)sign(θi0).

As ∂L(θ)
∂θi0

= OP (rN ), ∂
(
∂L(θ∗)
∂θi0

)
/∂θj = OP (r

2
N ) by the

standard argument for rN consistent estimator, thus

∂LP(θ)

∂θi0
= OP (rN )− r2NP′γ(|θi0|)sign(θi0)

= r2Nγ

(
OP (

1

rNγ
)− γ−1P′γ(|θi0|)sign(θi0)

)
.

Because that lim inf
N→∞

lim inf
θ→0+

γ−1P′γ(θ) > 0 and (rNγ)
−1 → 0,

∂LP(θ)
∂θi0

will be positive while θi0 is negative and vise versa.
As a result, Eq. (5) follows. Proof completes.

APPENDIX F
INTERPRETATION OF THE BENCHMARK: MGCP-RF

The illustration of MGCP-RF is shown in Fig. 1.
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Fig. 1. The structure of MGCP-RF

In this structure, target ft is generated by three kinds
of latent process: Z0(x), {Zi(x)}qi=1 and Zt(x). As Z0(x)
is the common process shared by sources, the covariance
matrix blocks between source fi and the other outputs are
zero only when the scale parameters in g0i(x) and git(x)

are zero simultaneously. Thus, the marginalized covariance
matrix C+ in Theorem 1 will be:

C+ =


Ch+1,h+1 · · · Ch+1,q Ch+1,t

...
. . .

...
...

CT
h+1,q · · · Cq,q Cq,t

CT
h+1,t · · · CT

q,t Ct,t

 .
The difference to MGCP-R is that covariance among the
remaining sources {fi}qi=h+1 can be modeled. This structure
is indeed more comprehensive but with the cost of a half
more parameters than MGCP-R. The cost will increase if
we use more latent process to model the correlation among
sources.

To realize the effect of shrinking g0i(x) and git(x) at the
same time, group-L1 penalty is used and the penalized log-
likelihood function is:

max
θ

LP(θ|y) =L(θ|y)− γ
q∑
i=1

√
α2
0i + α2

it,

APPENDIX G
INFLUENCE OF TUNING-PARAMETER

To test the influence of the tuning-parameter γ in our model,
we conduct the following experiment. Based on the same
dataset in the 1D example of simulation case I, we construct
MGCP-R model only with sources f1 and f2, and let γ vary
from 0 to 10 at a step of 1. Note that MGCP-T is equal to
the model with γ = 0. The boxplot of MAE with respect to
different values of γ is shown in Fig. 2. The estimated value
of α1t, α2t in one repetition is presented in Fig. 3. It can be
seen that as γ increases, source f2 will be excluded from the
prediction of target, leading to an increased prediction error.
In practice, cross-validation can be used to select an optimal
tuning-parameter.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0

0.5

1.0

1.5

M
AE

Fig. 2. Prediction error with different γ in 100 repetition.
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Fig. 3. Estimated values of α1t, α2t in one repetition.
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