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APPENDIX A
DERIVATION OF COVARIANCE FUNCTION IN CONVO-
LUTION PROCESS
For the convolution process:
fi(x) = gi(x) = Z(x) = / gi( — w)Z(u)du,

If Z(x) is a commonly used white Gaussian noise process,
ie., cov(Z(xz),Z(x')) = §(x — ') and E(Z(x)) = 0, then
the cross covariance is derived as:

cov{j (x, ') = cov{gi(x) x Z(x),g9;(x') x Z(x')}
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where v = x — «’ and the last equality is based on the
property of Dirac function that [ g(u')é(u’ —x)du’ = g(x).
For our MGCP structure:
yi(x) = fi(x) + ez )=gii( ) * Z'( )+6i( )i €I°
(@) = fi(@) + e(x) = gju(x) z) + er(x),
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the source-target covariance function can be calculated as:

covl, (z, @) = cov(f;(x), fi(z'))
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= Z cov {gii(x) * Z;(x), gjt(x') * Z;(x)}
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= [ sgetu—v)du, i€ @

where v =  — «’. In the same way, we can derive the auto-
covariance as

covf J(z,x’) —/ gii(w)gsi(u — v)du,i € T°

Z/ gjj(u)gji(u — v)du.
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APPENDIX B
PROOF OF THEOREM 1

Suppose that g;;(z) = 0,Vi € U C I for all z € X. For
notational convenience, suppose U = {1,2,...,h|lh < ¢},
then the predictive distribution of the model at any new
input ., is unrelated with { f1, f2, ..., fn} and is reduced to:

p(ye(+)|y)
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Proof. Recall that
covi(z,x') = covft(w, x')
~00
— [ giilgpu- v)du.
—o0

coviy(z,x’) = cov,{t(:c x') +old(x —x)

—Z/ gnn(w)gnt(w — v)du + o7 6(x — '),

hez
forall j € {1,2,...,q}, s0 git(x) = 0,7 € {1,2,....,hlh < ¢}
implies that covy, (z,a’) = 0 foralli € {1,2,...,h} and

y
coviy(z, z")

Z / gm git(u ’U)d’u,+0f25(:13 €T )

i=h-+1

Therefore, we have that C;;, = 0,i € {1,2,...,h} and

- : . c. 0
partition covariance matrix C' = ( ), where C_ =

0 C.
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The predictive distribution at point x, is

yi(@.) ~ N(KTC 'y, covly(@..2.) + o7 - KTC'K.).



Also, based on that covy,(z,z’) = 0 for all i € {1,2,...,h},

we have that K, = (0,k7)". Lety_ = (y{,....,yf)", then
y = (y7, yI)T Therefore,
- c. o\
Kfc 1y = (O’kz) < 0 C. (yz“’yz)T
c-' o
= (O’kz) < 0 C+1) (yT7yI)T
= kIC—Zly-i-v

KI'C'K, = (0,k%) ¢ 0 _1(0 kDT
* * T y TV 0 C+ )y TV
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=k,C, k4.
Note that the auto-covariance matrix of target output f,
C', is also unrelated with observed data { X;|i = 1,2, ..., h}
which from source output {f;|¢ = 1,2,...,h}. As a result,

the predictive distribution is totally independent on these
outputs. Proof completes.

APPENDIX C
REGULARITY CONDITIONS
In this part, we state the regularity conditions for the con-

sistency theorem of the MLE é#, which are formulated in
[34].

Denote y with total N observations as y¥, and let
p(y"10)
Pe(0) = ———<
= o)

for each k. Assume py(0) is twice differentiable with respect
to 8 in a neighborhood of 8*. Also assume that the support
of p(y”|0) is independent of @ in the neighborhood. Define
¢r(0) = logpk(0), and its first derivative ¢)(8), second
derivative ¢} ().

For simplicity and without loss of generality, we only
consider the conditions for one-dimensional case. Define

= ¢L(0*) and ¢} = ¢} (0*). Let Fn be the o-field
generated by y;,1 < j < N, and Fy be the trivial o-
field. Define the random variable i}, = var(¢j, |.7-'k 1) =

E[(6})?[Fr-— 1] and Iy = Y2;_, ij. Define Sy = Y231, ¢}/

and S% = Yoo, 7 + I%. If the following conditions hold:

(cl) ¢w(0) is thrice differentiable in the neighborhood of

0*. Let 3" = ¢}/ (6*) be the third derivative,

(c2) Twice differentiation of [ p(y™|0)du™ (yV) with re-
spect to 0 exists in the neighborhood of 6,

(3)  E|¢;”| < oo and E|¢;” + (¢7/)?] < oo

(c4) There exists a sequence of constants K (N) — oo as

N — oo such that:

) K(N)"'Sy =0,
i) K(N)~'Sy 2o,
(ili) there exists a(f*) > 0 such that Ye > 0,
PIK(N) Iz > 2a(6%)] > 1 — € for all
N > N(e),

(iv) K(N)"'S0 E|¢i"| < M < oo forall N,

then the MLE é# is consistent for 6*. There exists a sequence
ry such that ry — ocoas N — oo, i.e.,

l6 — 67 = Op(ry").
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Suppose that the MLE for L(8|y), 64, is ry consistent, i.e.,
satisfying Eq. . If max{|]P’”(0;"0)| 0% # 0} — 0, then
there exists a local maximizer 6 of Ly(8|y) s.t. |0 — 0% =
Op(ry' + o), where rg = max{|P, (0] : 0y # 0}.

Proof. Recall the assumptions in Section [3.2] For the
unpenalized log-likelihood L(8), the MLE 04 is ry con-
sistent where ry is a sequence such that ry — oo as
N — oo. And we have that L'(6*) = Op(ry) and
In(6%) = Op(r%;), which are the standard argument based
on the consistency of estimator. Based on that, we aim to
study the asymptotic properties of the penalized likelihood
Lp(0) = L(0) — r%P,(6y). Here we multiply the penalty
function by r% to aV01d that penalty term degenerates as
N — oo. The following proof is similar to that of Fan and
Li [33] but based on dependent observations.

To prove theorem 2, we need to show that for any given
€ > 0, there exists a large constant U such that:

P{ sup Lp(0* +1rhu) < Lp(@*)} >1—ck¢, ©)]
llull=U

where 7, = 7' + ro. This implies that with probability at
least 1 — e there exists a local maximum in the ball {6 +
r&u ¢ |lu|l| < U}. So the local maximizer 6 satisfies that
16— 6%|| = Op(ry)-

By P,(0) = 0, we have

Lp(67)
— L(6)

Py (107 + riuiol) —

Lp(6* +riu) —
< L(6* + riu)

q
- 2.

i=h+1

P (105])] »

where h and ¢ are the number of zero components and all
components in 6}, and u;p is the element corresponding
to 0,0 in u. Let I (0*) be the finite and positive definite
information matrix at 8* with N observations. Applying a
Taylor expansion on the likelihood function, we have that

Lp(e* + T]—CU) - L]p(o*)

<L (0% u — %(r})zuTIN(H*)u[l +op(1)]

—r% Z {TN]P)/ 03, )sign (605, wio
1=h+1

SRR +or(1)]), @
Note that ||L/(6*)|| = Op(ry) and In(0*) = Op(r%). so
the first term on the right-hand side of Eq. is on the
order Op(r};rx), while the second term is Op ((r?\}rN)Z).
By choosing a sufficient large U, the first term can be
dominated by the second term uniformly in ||u| = U.
Besides, the absolute value of the third term is bounded

by
V= hrrfrollul+(ryrg)? max{|P}(65,)] : 05 # 0}||ull?,

which is also dominated by second term as it is on the
order of op ((rnr3)?). Thus, Eq. ( . holds and the proof
completes.
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Let 67, and 65, contain the zero and non-zero components

in B, respectively. Assume the conditions in[Theorem 2]also

hold, and @ is 7y consistent by choosing proper v in IP., (o).

If lim inf lim inf v P/ (#) > 0 and (ryy)~' — 0, then
N—oo 60t

N—o00
Proof. To prove this theorem, we only need to prove that
for a small ey = Ury, where U is a given constant and
1=1,..,5s,

OLp(0
a )9i0<0,0< |0:0] < €n- (5)
By Taylor’s expansion,
aL:(0) OL(6) .
g = 0., — %P (10io0] )sign(fio)

_ OL(6%) OL(6%)
96 * {8( 080

— T?VP;(wwDSlgn(@lo)

As 90 = Op(rn), 0(%522) 00; = Op(r%) by the

standard argument for r consistent estimator, thus

0Ly (6)
080

) /aor (0 — 0%)[1 + 0p(1)]

= Op(rn) — ri P, (|6:0])sign(6i0)
=72 0] 1 1P’ (10 ign (6
=TrNY P(W) — 7 P, (|6io])sign(bio) ) -

Because that lim inf liminf 4~ 'P/ (#) > O and (ryvy)~!
oL (9) N=oo 007
P

will be positive while 0,y is negative and vise versa.
As a result, Eq. (B) follows. Proof completes.

— 0,

APPENDIX F
INTERPRETATION OF THE BENCHMARK: MGCP-RF

The illustration of MGCP-RF is shown in Fig.
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Fig. 1. The structure of MGCP-RF

In this structure, target f; is generated by three kinds
of latent process: Zy(x), {Z;(x)}{_, and Z;(x). As Zy(x)
is the common process shared by sources, the covariance
matrix blocks between source f; and the other outputs are
zero only when the scale parameters in go;(x) and g;:()

3

are zero simultaneously. Thus, the marginalized covariance
matrix C; in Theorem 1 will be:

Chitht1 Chri1,g Chirp
C+ — T . .
Ch+1,q Cq,q Cq,t
T T
Ciiiy Civ Cii

The difference to MGCP-R is that covariance among the
remaining sources { f; }{_, ., can be modeled. This structure
is indeed more comprehensive but with the cost of a half
more parameters than MGCP-R. The cost will increase if
we use more latent process to model the correlation among
sources.

To realize the effect of shrinking go;(z) and g;;(x) at the
same time, group-L1 penalty is used and the penalized log-

likelihood function is:
q

“9) o+ o

i=1

max Lp(6ly) =L(Oly)

APPENDIX G
INFLUENCE OF TUNING-PARAMETER

To test the influence of the tuning-parameter « in our model,
we conduct the following experiment. Based on the same
dataset in the 1D example of simulation case I, we construct
MGCP-R model only with sources f; and f3, and let y vary
from 0 to 10 at a step of 1. Note that MGCP-T is equal to
the model with v = 0. The boxplot of MAE with respect to
different values of 7 is shown in Fig.[2] The estimated value
of avi¢, gy in one repetition is presented in Fig. [3] It can be
seen that as =y increases, source fy will be excluded from the
prediction of target, leading to an increased prediction error.
In practice, cross-validation can be used to select an optimal
L

tuning-parameter.
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Fig. 2. Prediction error with different ~ in 100 repetition.

Fig. 3. Estimated values of a1, a2t in one repetition.
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